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A B S T R A C T   

When the deep learning model is applied to estimate battery state of charge (SOC), the information inside the 
training set cannot be leveraged thoroughly, which would cause poor SOC estimation accuracy and robustness on 
the testing set. To solve the problem, this paper proposes an adaptive convolutional neural network-gated 
recurrent unit with Kalman filter and feedback mechanism (Fb-Ada-CNN-GRU-KF) for SOC estimation consid
ering distribution difference of data segments inside the training set through transfer learning and extracting the 
spatial information through convolutional layer. Furthermore, the feedback mechanism provides the model more 
information to learn to correct the systematic error, and the KF in the proposed model works as a post data 
processor to obtain a steady and smooth SOC estimation results. Experimental and comparison results show that 
the proposed model for SOC estimation outperforms the existing deep learning methods in terms of the accuracy, 
generalization and stability.   

1. Introduction 

Globally, fuel combustion in transportation produces 24 % of carbon 
emissions, which is a major cause of global warming [1]. Electric ve
hicles (EVs) have been providing a solution to reduce emissions and 
mitigate climate change [2]. To ensure the safety and reliability of 
lithium ion (Li-ion) batteries in EVs, SOC, which signifies the remaining 
capacity of a Li-ion battery [3,4], needs to be estimated accurately in 
battery management systems (BMSs) [5]. Due to the strong nonlinear 
characteristics of Li-ion batteries, accurate SOC estimation is still facing 
significant challenges [6,7]. 

To date, the most popular SOC estimation method includes coulomb 
counting method, open circuit voltage (OCV) method, equivalent circuit 
model (ECM) method, and data-driven method. Coulomb counting 
method is restricted by high quality sensors and the unknown initial SOC 
[8]. OCV method can only be used when batteries reach equilibrium 
condition, which takes a long time and has a poor accuracy in the middle 
range of SOC [9]. ECM method usually combined with Kalman Filter 
(KF) requires to make the balance between model complexity and esti
mation performance [10–12]. Therefore, researchers attempt to explore 

data-driven method for a potential solution [13]. 
The most basic and popular model of data-driven method includes 

backpropagation neural network (BPNN), recurrent neural network 
(RNN) and the combination of RNN and convolutional neural network 
(CNN), etc. [14]. He et al. [15] introduced the BPNN algorithm to es
timate the SOC of a lithium iron phosphate battery, and the root mean 
square error (RMSE) of the predicted SOC was reported at 3.3 % under 
US06 driving cycle at 25 ◦C. Ephrem Chemali et al. [16] used long short 
term memory (LSTM) neural network, one kind of RNN, for SOC esti
mation. The application of LSTM overcame the drawback of exploding 
or vanishing gradient during back-propagation training of traditional 
RNN. Huang et al. [17] proposed a SOC estimation method using the 
CNN-GRU model, consisting of CNN layer followed by gated recurrent 
unit (GRU) layer and fully connected (FC) layer, achieving a mean ab
solute error (MAE) of 1.68 % under US06 diving cycle at 30 ◦C. The 
combination of CNN and GRU helps in extracting both spatial features 
and temporal features in data. Liu et al. [18] developed a SOC estimation 
method leveraging transfer learning with fine-tuning strategy, which 
needs only 30 % of training data when transferred to different batteries. 
Oyewole et al. [19] utilized a controllable deep transfer learning (CDTL) 

* Corresponding author at: School of Automotive Engineering, Harbin Institute of Technology, Weihai, No. 2, West Wenhua Road, High-tech District, Weihai 
264209, Shandong, China. 

E-mail address: qqyu@hit.edu.cn (Q. Yu).  

Contents lists available at ScienceDirect 

Journal of Energy Storage 

journal homepage: www.elsevier.com/locate/est 

https://doi.org/10.1016/j.est.2023.108037 
Received 4 November 2022; Received in revised form 14 April 2023; Accepted 10 June 2023   

mailto:qqyu@hit.edu.cn
www.sciencedirect.com/science/journal/2352152X
https://www.elsevier.com/locate/est
https://doi.org/10.1016/j.est.2023.108037
https://doi.org/10.1016/j.est.2023.108037
https://doi.org/10.1016/j.est.2023.108037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.est.2023.108037&domain=pdf


Journal of Energy Storage 70 (2023) 108037

2

network on the shared knowledge between a target battery and a source 
battery with adaptive regularization, which guarantees the controlla
bility and reduces the likelihood of negative transfer learning. According 
to the results, the CDTL method has an improvement of 60 % in RMSE 
for the battery with the same chemistry. 

However, none of the above-mentioned methods has thoroughly 
considered the distribution differences in the training dataset, which 
causes a poor performance in generalization and accuracy in SOC pre
diction results. In the field of artificial intelligence theory, Du et al. [20] 
recently proposes an Ada-RNN method, which incorporate RNN and 
transfer learning to characterize the distribution difference in time series 
which leverages the principle of maximum entropy. The results show 
that the Ada-RNN has strong ability to provide the generalized and ac
curate SOC estimation. Consequently, an effective SOC estimation 
framework called the feedback Fb-Ada-CNN-GRU-KF method, based on 
deep learning model with transfer learning, feedback mechanism and 
post data processor, is proposed in this paper. The contributions of this 
paper can be summarized as follows:  

(1). Ada-CNN-GRU model based on Ada-RNN with transfer learning 
function is proposed and firstly applied for SOC estimation of a Li- 
ion battery, which takes into consideration of both the segments’ 
distribution difference and spatial features of the training dataset.  

(2). An error feedback mechanism, taking the predicted SOC error as 
an additional training feature, is proposed to enrich the infor
mation of training dataset and to reduce systematic prediction 
error. The KF algorithm is leveraged as a post processing machine 

to eliminate the abnormal prediction value and suppress its 
fluctuation.  

(3). The accuracy and robustness of the proposed method for SOC 
estimation is verified and compared with that of the other exist
ing methods under the dynamic driving cycle from Panasonic Li- 
ion battery at different temperatures. Also, the effectiveness of 
adding CNN layer, KF algorithm and feedback mechanism into 
the proposed model to improve the performance of SOC estima
tion is verified. 

The remaining sections of this paper are organized as follows: Sec
tion 2 introduces the methodology: the architecture of the CNN-GRU; 
the architecture of the Ada-GRU; and the KF algorithm. Section 3 
elaborates the Fb-Ada-CNN-GRU-KF method for SOC estimation. Section 
4 describes the experimental analysis: dataset description; input and 
output structures; and evaluation results at different ambient tempera
tures. Section 5 is the conclusion of this study. 

2. Methodology 

2.1. The architecture of the CNN-GRU 

The overall structure of CNN-GRU model is shown in Fig. 1, 
including an input layer, a CNN layer, a GRU layer, a fully connected 
(FC) layer and an output layer. It is mainly a combination of CNN model 
and GRU model. 

CNN is a class of deep learning neural network with the advantages 
of local connection, weight sharing and down-sampling dimensionality 
reduction [21] can extract features adaptively [1] and reduce the 
computation burden. The core of the CNN is the convolution kernel, 
through which the convolution is operated. As shown in Fig. 2(a), CNN 
extracts feature information through moving convolution kernel. 
Assuming that the input and output of the convolutional neural network 
are xd,i+m,j+n and ai,j, respectively, the relationship between the input 
and output can be expressed as follows: 

ai,j = f

(
∑D− 1

d=0

∑W− 1

w=0

∑H− 1

h=0
wd,w,hxd,i+m,j+n +wb

)

(1)  

where D, W and H respectively denotes the output depth, width and 
height of convolutional kernal, f (⋅)is the convolution operation. 

As an improved RNN, GRU can avoid the problem of gradient 
disappearance [22] and allow each recurrent unit to adaptively capture 
sequence dependencies over various lengths of time [17]. Fig. 2(b) 
shows a GRU unit which contains the reset gate, which determines how 
much past information will be forgotten; and the update gate, which 
determines how much information will be updated. At the time step t, 
the forward pass of a GRU unit is proceeded as follows: 

x

y
x

mx

Fig. 1. Overall structure of CNN-GRU model.  

Fig. 2. Structure of (a) CNN (b) GRU.  
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⎧
⎪⎪⎨

⎪⎪⎩

rt = σ(wr⋅[ht− 1, xt] )

zt = σ(wz⋅[ht− 1, xt] )

h̃t = tanh(w⋅[rt ⊙ ht− 1, xt] )

ht = (1 − zt) ⊙ ht− 1 + zt ⊙ h̃t

(2)  

where rt and zt are the reset gate and update gate, respectively; xt is the 
input; wrepresents the weight value; ̃ht and ht are the temporary hidden 
state and output of the hidden layer, respectively. σ(⋅) and tanh(⋅) are the 
sigmoid activation function and bitangent activation function, respec
tively; ⊙ represents an element-wise multiplication. 

2.2. The architecture of the Ada-RNN 

Ada-RNN proposed by Du et al. [20] is a class of transfer learning 
method which can find the data segments with the largest distribution 
difference in the training dataset and reduce the distribution difference 
between these data segments to achieve higher generalization and ac
curacy than the traditional RNN model. The overview of Ada-RNN is 
depicted in Fig. 3(a), it is mainly composed of two parts: temporal dis
tribution characterization (TDC) and temporal distribution matching 
(TDM). 

The TDC algorithm aims at finding the data segments with the largest 
distribution differences and splitting them apart based on the principle 
of maximum entropy, and it searches for the periods most dissimilar to 
each other through the following formula: 

max
0<K≤K0

max
n1 ,…,nK

1
K
∑

1≤i∕=j≤K

d
(
Di,Dj

)

st.∀i,Δ1 < |Di|〈Δ2;
∑

i
|Di| = n

(3)  

where K is the number of periods, and K0 is a hyper-parameter to avoid 
over-splitting; d(⋅, ⋅) is a distance metric; D is the time series segments, 
Δ1 and Δ2 are hyper-parameters to avoid trivial solutions. 

In addition, d(⋅, ⋅) can be any distance function, such as maximum 
mean discrepancy (MMD) [23] or cosine distance [24]. Taking the MMD 
function as an example, the distance is calculated as follows: 

dmmd(xs, xt) =
1
n2

s

∑ns

i,j=1
k
(
xsi , xsj

)
+

1
n2

t

∑nt

i,j=1
k
(
xti , xtj

)
−

2
nsnt

∑ns+nt

i,j=1
k
(
xsi , xtj

)
(4)  

where xs and xt are the source data and target data, respectively; k(⋅, ⋅) is 
the radial basis function (RBF) kernel; ns and nt are the number of the 
two sets of data. 

To avoid complicated calculation, the TDC algorithm will evenly 
divide the time series into N parts, in which each part is the smallest unit 
and undividable. Then, an appropriate value of K, which is an integer, 
will be determined in a range of [2, N] through greedy algorithm. For 
example, if we set the starting point of the data to be A, the end point to 
be B and N to be 5. When K = 2, our goal is to find an appropriate point C 
to maximize the distance d(SAC, SCB). The TDC algorithm is generally 
applied to the case which has no obvious distribution differences in the 
time series. If a period of time series itself has obvious distribution dif
ference limits, different data segments can be divided manually, and the 
goal of getting data segments with the largest distribution difference will 
also be achieved. 

TDM in the Ada-RNN model is responsible for matching these split 
data segments and building a prediction model, and it is implemented by 
minimizing the followng loss function: 

L(θ,α) = Lpred(θ)+ λ
2

K(K − 1)
∑i∕=j

i,j
Ltdm

(
Di,Dj; θ,α

)
(5)  

where θ denotes the learnable model parameters; α denotes the impor
tance evaluation factor of each pair of data segments; and λ is a trade-off 
parameter. 

Specially, the Lpred(θ) can be computed by 

Lpred(θ) =
1
K
∑K

j=1

1
⃒
⃒Dj
⃒
⃒

∑|Dj|

i=1
l
(
yj

i,M
(
xj

i; θ
) )

(6)  

where l(⋅, ⋅) is a MSE loss function; M denotes the prediction model; and 
(

xj
i, y

j
i

)
denotes the i-th labeled segment from period Dj. 

Given a period of 
(
Di,Dj

)
, loss of temporal distribution matching can 

be obtained by 

Ltdm

(
Di,Dj; θ, αt

i,j

)
=
∑V

t=1
αt

i,jd
(

ht
i, h

t
j; θ
)

(7)  

where 
(

ht
i , ht

j

)
denotes the hidden state parameters of models trained 

Fig. 3. The architecture of (a) Ada-RNN (b) TDM.  
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from Di andDj, respectively. 
The evaluation factor of each pair of data segments, αt

i,j, aiming at 
learning the relative importance of V-dimensional hidden states in the 
model, is calculated by 

αt,(n+1)
i,j

⎧
⎪⎨

⎪⎩

αt,(n)
i,j ×

(
1 + σ

(
dt,(n)

i,j × dt,(n− 1)
i,j

))
dt,(n)

i,j ≥ dt,(n− 1)
i,j

αt,(n)
i,j otherwise

(8)  

where dt,(n)
i,j is the distribution distance at the time step t in epoch n. 

2.3. The KF algorithm 

The KF algorithm obtains the optimal estimation of the current 
moment using the estimated value of the previous moment and the 
observed value of the current moment. It is composed of two parts: time 
update equation and state update equation. The time update equation, 
shown in Eq. (9), is used to extrapolate forward the values of the current 
state variables and error covariance estimates in time in order to 
construct prior estimates for the next state [25]: 
{

x̂n+1,n = Fx̂n,n + Gun
Pn+1,n = FPn,nFT + Q (9)  

where x̂n+1,n is a predicted system state vector at the time step n+ 1, x̂n,n 

is an estimated system state vector at the time step n, un represents input 
variable, F is the state transition matrix, G represents control matrix; 
Pn+1,nis the covariance matrix for the next state, Pn,nis the covariance 
matrix of the current state, Q is the process noise uncertainty. 

The state update equation incorporates a new measurement into the 
a priori estimate to obtain an improved posteriori estimate [25], and it is 
computed as: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Kn = Pn,n− 1HT (HPn,n− 1HT + Rn
)− 1

x̂n,n = x̂n,n− 1 + Kn
(
zn − Hx̂n,n− 1

)

Pn,n = (I − KnH)Pn,n− 1(I − KnH)
T
+ KnRnKT

n

(10)  

where Kn is Kalman gain; H is observation matrix, Rn is the measurement 
uncertainty; zn is a measurement; Iis an identity matrix. 

3. Fb-Ada-CNN-GRU-KF model for SOC estimation 

RNN module has a problem of gradient disappearance in long time 
series prediction, to solve this problem, the RNN module in Ada-RNN 
would be substituted with GRU in this paper. And for a better spatial 
information extraction, a CNN layer would be added before the GRU 
layer, so that an Ada-CNN-GRU model is built. 

For a certain deep learning model, the distribution of training data 
and the structure of the model itself can lead to a certain error in 
different validation set after training, namely systematic error, which 
means it can be predicted theoretically. Therefore, an error feedback 
mechanism is proposed to first predict the systematic error and feed it 
back as input for model correction. 

As too many parameters in neural network can result in overfitting 
and output fluctuation in complex prediction problems, and Kalman 
filter can effectively decrease fluctuations considering both the observed 
value and the predicted value, thus is adopted as the post-processor to 
reduce the fluctuation of model prediction. 

The proposed framework of the Fb-Ada-CNN-GRU-KF model for SOC 
estimation is shown in Fig. 4, which is mainly composed of 3 steps. 

Step 1: an Ada-CNN-GRU model will be roughly trained to obtain the 
predicted SOC, then the SOC error on the training data set, which partly 
reflects the model’s systematic accuracy, would easily be calculated 
according to reference SOC. 

Step 2: an Ada-CNN-GRU model, which takes the SOC error obtained 
from the step one as label, will be trained to make a prediction of SOC 
error on the validation and testing data set. Thus, the SOC error can be 
used as a novel feature for the feedback on these two data sets. 

Step 3: a Fb-Ada-CNN-GRU model for SOC estimation will be 
trained, which takes the voltage, current, temperature of a battery and 
the predicted SOC error as input and the SOC as an output. After that, the 
KF is added at the end of the proposed framework as a post processor, 
which takes the SOC from the Fb-Ada-CNN-GRU model as measurement 

Fig. 4. The proposed framework of Fb-Ada-CNN-GRU-KF model.  

Y. Yang et al.                                                                                                                                                                                                                                    



Journal of Energy Storage 70 (2023) 108037

5

value and the Coulomb Counting method as the update function to 
further improve the stability of the SOC estimation. 

The maximum absolute error (MAX), mean absolute error (MAE) and 
the root mean square error (RMSE), as defined in Eq. (11), are chosen to 
assess the SOC estimation performance of the proposed framework. The 
MMD, as shown in Eq. (4), is chosen to be the distance calculation for
mula between each pair of segments. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

MAX = max(|yi − ŷi|)

MAE =
1
m

∑m

i=1
|yi − ŷi|

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(yi − ŷi)

2

√
(11)  

4. Experimental analysis 

4.1. Dataset description 

The data used in this paper is recorded by Phillip [26] from a 
Panasonic NCR18650PF Li-ion battery, of which the nominal capacity is 
2.32 Ah. The battery was tested under the selected drive cycles at 
different ambient temperatures, and the whole test was conducted in a 
thermal chamber with testing equipment manufactured by Digatron 
Firing Circuits. The current sensor used to measure current and calculate 
capacity has an error of less than 25 mA. For the typical dataset, this can 
cause a cumulative error under 40 mAh, which is very small compared 
to the battery capacity [16]. 

The thermal chamber was first set to 25 ◦C followed by 3 h of rest to 
guarantee the battery’s internal temperature is 25 ◦C. The battery was 
then fully charged with a constant current of 1C followed by a constant 
voltage of 4.2 V. This charge process was terminated when the charge 
current fell below 50 mA. The thermal chamber was then set to the 
desired temperature and waited for another 3 h for the battery’s internal 
temperature to stabilize. After that, the dynamic driving cycle test would 
start, including HWFET, HPPC, LA92, US06, UDDS and the mixture of 
them named as Cycle4 and NN. Fig. 5 shows the current and voltage 
profiles based on these dynamic driving cycles which differ greatly from 

each other and will provide a broad range of realistic driving conditions 
for model training and validation. 

4.2. Evaluation at different ambient temperatures 

The battery data is divided into the training dataset, validation 
dataset and testing dataset. The training dataset for SOC estimation 
consists of the data corresponding to 4 dynamic driving cycles: HPPC, 
Cycle 4, LA92, US 06, the validation dataset consists of the data corre
sponding to NN cycle, and the testing dataset includes the data recorded 
in HWFET cycle and UDDS cycle. Since the characteristic of the battery 
is heavily affected by temperature, all of the data contains the infor
mation of the battery at the temperatures of 25 ◦C, 10 ◦C and 0 ◦C. As the 
data used in this paper are from a laboratory, it is easy to identify the 
distribution difference in all the dataset adopting the manual method of 
TDC to split the time series and the results are shown in Fig. 6. And letter 
a, b c, d in Fig. 6 represent driving conditions of HPPC, Cycle 4, LA 92 
and US06 under 3 different temperatures, respectively. 

For a long input sequence length can result in a better estimation 
accuracy within limits but a huge computing consumption and lower 
computing speed, a balance is needed when setting the length of input 
sequence. According to experience, the input is set as a matrix with a 
fixed size of 120 × 3 and the corresponding output is a 1 × 1 SOC value, 
they can be expressed as: 

Fig. 5. Current and voltage profiles based on the dynamic driving cycles at 25 ◦C (a) HPPC (b) Cycle4 (c) LA92 (d) NN (e) HWFET (f) UDDS.  

Fig. 6. Dataset division and TDC operation on battery data.  
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Table 1 
Structure hyper-parameters of the proposed model.  

Layers (in order) Parameter Information Settings 

CNN (Input channel, output channel, kernel size) (1, 4, (5, 3)) 
CNN (Input channel, output channel, kernel size) (4, 8, 5) 
GRU (Input size, hidden size, layer number) (8, 32, 2) 
FC (Input size, output size) (32,1)  

Fig. 7. Prediction of SOC error.  

Fig. 8. Evaluation results of HWFET cycle at (a) 25 ◦C, (c) 10 ◦C, (e) 0 ◦C, of UDDS cycle at (b) 25 ◦C, (d) 10 ◦C, (f) 0 ◦C.  
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inputi =

⎛

⎜
⎜
⎜
⎜
⎝

Ui Ii Ti

Ui+1

⋮

Ii+1

⋮

Ti+1

⋮
Ui+119 Ii+119 Ti+119

⎞

⎟
⎟
⎟
⎟
⎠

120×3

outputi = (SOCi)1×1

(12)  

where Ui, Ii, Ti, SOCi denote the voltage, current, temperature and SOC 
at the i-th sampling point, respectively, 120 rows indicate that the input 
window contains 120 sampling point, and 3 columns indicate the feature 
number is 3. 

In order to investigate the effect and superiority of the proposed Fb- 
Ada-CNN-GRU-KF model for SOC estimation, we compare it with the 
CNN-GRU model and Ada-GRU model for SOC estimation. We also 
investigate the effect of every single part of the modification of the Fb- 
Ada-CNN-GRU-KF model. It is worth noticing that the reference SOC 
is calculated using the coulomb counting method. 

Neural networks are sensitive to hyper-parameters, even the same 
model can output totally different results because of the difference of 
hyper-parameters. In this paper, the structure hyper-parameters such as 
the size and stride of convolution kernel in CNN layer, the number of 
layers and hidden nodes of GRU layers of the proposed method are kept 
as same as possible with the comparison model. And the specific settings 
are shown in Table 1. Note that when there is novel feature added as 
input in Step 3, the kernel size of the first CNN layer would be (5, 4). 

Learning rate and batch size are fine-tuned to make sure that each 
model could bring out its best result, they are set to 0.001 and 16, 
respectively. And training epoch is set to 300 in every Step. In addition, 
the weight of transfer learning loss is set to 0.01. In the post processor KF 
algorithm, the process noise and measurement noise are both set to 10− 5 

according to the parameter tuning experience gained on validation set. 
Fig. 7 shows the SOC error of all the training set, validation set and 

test set after Step 2. And it will be then used as a novel feedback feature 
in Fb-Ada-CNN-GRU model and Fb-Ada-CNN-GRU-KF model. It is worth 
noticing that the SOC error in test set was predicted based on voltage, 
current and temperature, and thus it can be leveraged directly under 
unknown conditions. 

The predicted SOC error results under HWFET and UDDS driving 
cycles at different temperatures of all the comparative models and the 
proposed model are shown in Fig. 8, their statistical results are illus
trated in Tables 2 and 3, respectively. 

From Fig. 8, it can be observed that the CNN-GRU model always has 
the largest MAE, RMSE and MAX error under HWFET and UDDS driving 

cycle under each working condition. By contrast, the Ada-GRU model 
with transfer learning has a relatively small MAE and RMSE, but there is 
still a large fluctuation. The Ada-CNN-GRU method by adding the CNN 
layers before GRU layers on the Ada-GRU model can take the spatial 
characteristics of the data into account and achieve a MAE of 0.5 % 
under HWFET driving cycle and 1.5 % under UDDS driving cycle. The 
Fb-Ada-CNN-GRU model through introducing a feedback mechanism to 
the Ada-CNN-GRU model can achieve a MAE of 0.2 % under HWFET 
driving cycle and 0.8 % under UDDS driving cycle, which means that the 
accuracy is further improved. The Fb-Ada-CNN-GRU-KF model by 
employing the KF as a post processor can achieve a MAE below 0.2 % 
and MAX error below 0.8 % under HWFET driving cycle and a MAE 
below 0.8 %, MAX error below 3 % under UDDS driving cycle. 

From the above discussion, the proposed Fb-Ada-CNN-GRU-KF 
model significantly improve its performances in terms of the accuracy, 
generalization and stability in SOC estimation of a Li-ion battery 
through the introduction of transfer learning, spatial feature extraction, 
feedback mechanism and the KF as a post processor compared to 
traditional CNN-GRU models. 

5. Conclusion 

In this paper, a Fb-Ada-CNN-GRU-KF method, which combines the 
advantages of transfer learning and deep learning, is proposed based on 
Ada-GRU model and CNN-GRU model. To further improve the accuracy, 
a feedback mechanism is introduced to predict the SOC error as a novel 
feature for model training and the KF is implemented as a post data 
processor to provide a steady and smooth SOC estimation results. The 
accuracy and robustness of the proposed model for SOC estimation are 
verified under HWFET and UDDS working conditions at different 
ambient temperatures and compared with the CNN-GRU model, Ada- 
GRU model, Ada-CNN-GRU model and Fb-Ada-CNN-GRU model. The 
results show that the proposed model has a minimum mean MAE and 
RMSE values of 0.78 % and 0.82 % under HWFET and UUDS driving 
cycle and achieve the best performances in terms of the accuracy, 
generalization and stability in SOC estimation of a Li-ion battery. The 
results also validate the effectiveness of every part of the modification 
based on CNN-GRU model and Ada-GRU model. 

Future work could (1) extend the application of the proposed model 
to SOH estimation of batteries and further improve the accuracy of SOC 
estimation based on the estimated SOH; (2) optimize the parameters that 
need to be manually adjusted. 

Table 2 
Evaluation results under HWFET cycle.   

25 ◦C 10 ◦C 0 ◦C 

Models MAE (%) RMSE (%) MAX (%) MAE (%) RMSE (%) MAX (%) MAE (%) RMSE (%) MAX (%) 

#1  1.29  1.67  4.34  2.80  3.41  7.52  1.31  1.72  6.55 
#2  0.59  2.24  3.06  0.79  2.81  4.75  0.50  2.23  4.52 
#3  0.22  1.16  1.38  0.30  1.77  1.81  0.40  3.47  4.33 
#4  0.19  0.24  1.29  0.17  0.23  1.38  0.19  0.23  0.86 
#5  0.18  0.22  0.60  0.16  0.20  0.73  0.13  0.17  0.54 

Note: #1: CNN-GRU, #2: Ada-GRU, #3 Ada-CNN-GRU, #4: Fb-Ada-CNN-GRU, #5: Fb-Ada-CNN-GRU-KF. The same model number is also used in the following table. 

Table 3 
Evaluation results under UDDS cycle.   

25 ◦C 10 ◦C 0 ◦C 

Models MAE (%) RMSE (%) MAX (%) MAE (%) RMSE (%) MAX (%) MAE (%) RMSE (%) MAX (%) 

#1  1.22  1.39  3.69  1.00  1.28  4.66  1.64  1.88  5.22 
#2  0.86  1.62  6.59  1.29  2.16  7.71  1.47  1.73  7.59 
#3  0.98  1.48  4.94  1.25  1.93  7.05  0.71  0.87  2.72 
#4  0.74  1.04  4.20  0.62  0.93  5.26  0.42  0.53  2.32 
#5  0.70  0.82  2.12  0.54  0.78  2.98  0.39  0.47  1.52  
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