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A B S T R A C T   

In the realm of lithium-ion battery state estimation, traditional data driven approaches face challenges in 
accurately estimating state of charge and state of health throughout the battery’s life cycle under dynamic 
working condition, and there is still a lack of research on models that can fulfill these requirements simulta
neously. To address these issues, this study proposes an adaptive convolutional gated recurrent unit with Kalman 
filter for state of charge estimation throughtout battery’s full life cycle, leveraging transfer learning and deep 
learning techniques. Additionally, an adaptive convolutional gated recurrent unit with average post-processor is 
developed to estimate the battery state of health under dynamic working conditions, using voltage, current, 
temperature, state of charge, and accumulated discharge capacity as input features. Furthermore, a joint adaptive 
deep transfer learning model is proposed for simultaneously state of charge and state of health estimation 
through battery’s full life cycle under dynamic working conditions. Experimental results validate the feasibility, 
accuracy, and robustness of the proposed models.   

1. Introduction 

The growing demand for electric vehicles is driven by environmental 
concerns and the depletion of fossil fuels [1,2]. Lithium-ion batteries 
have emerged as the preferred power source for electric vehicles due to 
their outstanding performance [3]. However, challenges in accurately 
estimating battery states within the battery management system hinder 
widespread adoption of electric vehicles [4]. State of charge (SOC) and 
state of health (SOH) are crucial indicators within battery management 
system, but their estimation requires indirect features derived from 
external battery characteristic parameters such as voltage, current, and 
temperature [5,6]. 

SOC estimation methods mainly includes the coulomb counting 
method [7], open circuit voltage method [8], analytical model method 
[9] and data driven method [10]. The first three methods failed to meet 
the needs for high accuracy and robustness requirements in dynamic and 
intense application conditions. In contrast, data driven methods, with its 

ability to handle complex nonlinear problems, have gained popularity in 
SOC estimation, especially with the advancements in computational 
power, such as graphics processing unit [11]. SOH estimation methods 
mainly includes coulomb counting method [12], impedance spectros
copy method [13], analytical model method and data driven method. 
Similarly, the first three methods face challenges in actual dynamic 
conditions for their operational procedures and limited performance, 
and the data driven methods, on the other hand, offering a promising 
direction for SOH estimation [14,15]. 

Up to now, researchers have applied various specific data driven 
methods like support vector machine [16], back propagation neural 
network and recurrent neural network (RNN) to estimate SOC and SOH. 
Huang et al. [17] proposed an SOC estimation method using the con
ventional neural network (CNN) and gated recurrent unit (GRU) model, 
achieving a mean absolute error (MAE) of 1.68% under Supplemental 
Federal Test Procedure-US06 (US06) diving cycle, which is not satis
fying. Yang et al. [18] proposed an adaptive convolutional neural 
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network-gated recurrent unit with Kalman filter and feedback mecha
nism (Fb-Ada–CNN–GRU-KF) achieving an MAE around 0.8% under 
Urban Dynamometer Driving Schedule (UDDS) condition, but the model 
cannot be applied in the full life cycle of batteries for the model’s 
complexity and lack of batteries’ health state. For SOH estimation, 
Qiang et al. [19] achieved MAE of 0.3% utilizing features extracted from 
incremental capacity curve drawn from constant current constant 
voltage (CCCV) condition, which is unable to be applied in dynamic 
discharging process. Due to the strongly correlated relationship between 
SOC and SOH, various joint estimation methods have been designed and 
proposed [20–22]. Qiu et al. [23] estimated SOC and SOH jointly 
combining the backward smoothing square root cubature Kalman filter 
and the extended Kalman filter, but this method cannot be applied at 
intense working conditions. Li et al. [24] estimated SOC and SOH based 
on Gaussian process regression and CNN, which is easy to be applied in 
actual condition, but need additional expensive sensors to get more 
information. 

In general, for SOC estimation, the conventional data driven methods 
are not applicable when considering battery degradation, and for SOH 
estimation, they are usually not suitable for dynamic discharging con
dition. In addition, the joint estimation methods mentioned above either 
cannot handle intense conditions or require additional sensors. To solve 
the problems mentioned above in data driven methods, a joint adaptive 
deep transfer learning (JADTL) model is proposed in this study to jointly 
estimate battery SOC and SOH. The contributions of this paper can be 
summarized as follows:  

(1) A novel SOC estimation model, Ada–CNN–GRU-KF, is proposed 
based on deep learning and transfer learning. This model ach
ieves a balance between accuracy and computational burden by 

considering both the distribution difference among segments and 
spatial features of the training datasets.  

(2) Similarly, a novel SOH estimation model, Ada–CNN–GRU-Ave, is 
proposed for dynamic working condition. This model takes into 
account the cross time scale characteristics of SOC and SOH, and 
takes dual time scale input and simplifies the traditional complex 
modeling process.  

(3) An SOC and SOH joint estimation model is proposed by 
combining the Ada–CNN–GRU-KF and Ada–CNN–GRU-Ave 
models. This model aims to achieve accurate and robust estima
tion of SOC and SOH throughout the full life cycle of batteries 
under dynamic working condition. 

The following sections of this paper are arranged as follows: Section 
2 introduces the methodology: the structure of the Ada–CNN–GRU, the 
Ada–CNN–GRU-KF model for SOC estimation, the Ada–CNN–GRU-Ave 
model for SOH estimation; and the JADTL model for joint estimation of 
SOC and SOH. Section 3 describes the battery datasets. Section 4 is the 
experimental evaluation of different models. Section 5 is the conclusion 
of this study. 

2. Methodology 

2.1. The architecture of the Ada–CNN–GRU 

CNN is a deep learning neural network that offers the advantages of 
local connection, weight sharing, and down-sampling dimensional 
reduction for adaptive feature extraction [25]. GRU, as an enhanced 
RNN, tackles the issue of gradient disappearance [26] and enables units 
to adaptively capture sequence dependencies over varying time lengths 

Fig. 1. Structure of Ada–CNN–GRU (a) Overview of Ada–CNN–GRU; (b) TDC; (c) TDM  
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[27]. A CNN-GRU model comprises both CNN and GRU layers. At first, 
spatial information is extracted from different features by CNN, which is 
then fed into the GRU to capture the hidden temporal information 
within each feature’s time series. This ensures comprehensive utilization 
of the raw experimental data. 

Ada-RNN, proposed by Du et al. [28], is a deep transfer learning 
method. Initially, it identifies data segments with the greatest distribu
tion differences in the training datasets. And by reducing the distribu
tion discrepancies among these segments, higher levels of generalization 
and accuracy are achieved. Battery discharging process varies greatly 
under different working conditions, data from mild working condition 
can provide regular information and used to get stable model parameter, 
while data from intense working condition can provide various infor
mation and used to get a model suitable in different scene. Ada-RNN 
model can make a balance among different kind of data to get a 
model with high stability and generalization theoretically. Building 
upon Ada-RNN, Yang et al. [18] proposed Ada–CNN–GRU, which 
combines the advantages of CNN and GRU. The overview of 
Ada–CNN–GRU, illustrated in Fig. 1, consists primarily of two compo
nents: temporal distribution characterization (TDC) and temporal dis
tribution matching (TDM). 

The TDC algorithm aims to identify data segments with the most 
significant distribution differences and separate them based on the 
principle of maximum entropy. Given the clear distribution differences 
observed in battery data collected during laboratory experiments, which 
can be readily distinguished by working condition, manual splitting 
method will be adopted instead of a complex greedy algorithm. TDM, of 
which the structure is shown on the right of Fig. 1, is responsible for 
matching those split data segments and building a prediction model, and 
it is achieved through the minimization of loss function Eq. (1): 

L(θ, α)=Lpred(θ) + λ
2

K(K − 1)
∑i∕=j

i,j
Ltdm

(
Di,Dj; θ, α

)
(1)  

where Lpred is loss of the prediction; θ is learnable model parameters; Ltdm 
is loss of TDM; Di and Dj represents different data segments; α denotes 
the importance evaluation factor of each pair of data segments; and λ is a 
trade-off parameter. 

And Lpred(θ) can be computed by Eq. (2). 
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1
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where l(⋅, ⋅) is MSE loss function; M represents model prediction; and 
(xj

i, y
j
i) denotes the i-th labeled segment from period Dj. 

Given a period of (Di,Dj), loss of temporal distribution matching can 
be calculated through Eq. (3): 
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(3)  

where (ht
i , ht

j) denotes the hidden state parameters of models trained 
from Di and Dj, respectively; d(⋅, ⋅) represents maximum mean discrep
ancy (MMD) in this paper, and it is calculated through Eq. (4). 
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(4)  

where xs and xt are the source data and target data, respectively; k(⋅, ⋅) is 
the radial basis function kernel; ns and nt are the number of the two sets 
of data. 

The evaluation factor for each pair of data segments, αt
i,j, with the 

objective of determining the relative significance of V-dimensional 
hidden states in the model, is computed through Eq. (5). 

αt,(n+1)
i,j

⎧
⎨

⎩

αt,(n)
i,j ×

(
1 + σ

(
dt,(n)

i,j × dt,(n− 1)
i,j

))
dt,(n)

i,j ≥ dt,(n− 1)
i,j

αt,(n)
i,j otherwise

(5)  

where dt,(n)
i,j is the distribution distance at the time step t in epoch n. 

2.2. Ada–CNN–GRU-KF model for SOC estimation 

As the battery ages, its capacity gradually decreases, leading to a 
decline in the precision of SOC estimation. Most existing SOC estimation 
methods can only be operated at one single aging point, and cannot be 
applied throughout the entire lifespan of a battery. In view of this issue, 
an Ada–CNN–GRU-KF model is constructed in this section to estimate 
the SOC, while considering the battery’s SOH, across the battery’s full 
life cycle. By the way, for SOH changes slowly, it is a calculation waste to 
calculate SOH every seconds, thus aging point is leveraged to represent 
key time points among which there is a marked SOH difference. Fig. 2 
illustrates the model structure, which primarily comprises the TDC 
module, the TDM module, and the KF post-processing module to provide 
stable prediction. 

During the model training and validation process, the data is input 
using a sliding window approach, where each window consists of 120 
time points and encompasses 4 features. The mathematical representa
tion of the model’s input and output is expressed as Eq. (6). 

Fig. 2. Ada–CNN–GRU-KF model.  
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(6) 

The KF algorithm is composed of time update equation and state 
update equation, which will not be explained in detail here. The KF post- 
processing module takes the output of the Ada–CNN–GRU part as the 
observation and takes the Coulomb counting method as the update 
equation to obtain a smooth SOC output second by second online. 

2.3. Ada–CNN–GRU-Ave model for SOH estimation 

The structure of the Ada–CNN–GRU-Ave model is shown in Fig. 3, 
and it consists of the TDC module, the TDM module, and the mean post- 
processing module, taking voltage, current, temperature, SOC and 
accumulated discharged capacity (ADC) as input. Since SOH changes 
slowly throughout the battery’s entire lifespan and the space usage of 
collected feature data is extremely large, there exists obvious redun
dancy in the feature data. Consequently, the data fed in Ada–CNN–GRU- 
Ave model is sampled at a frequency of 0.1 Hz, which implies that 
feature data collected at 1 Hz in BMS would be resampled every 10 s to 
facilitate the process of model training and application by reducing 
complexity. 

The conventional deep learning models utilized for SOH estimation 
primarily rely on voltage, current, and temperature as input variables. 
However, these inputs may not be effective in accurately estimating SOH 
under intricate and dynamic operating conditions throughout the bat
tery’s entire lifespan. Because there is a strong correlation among SOH, 
SOC and ADC, so SOC and ADC are also taken as additional features 
alongside voltage, current, and temperature. Given the high precision of 
the laboratory testing equipment, to ensure a high-accuracy model to be 
trained, the SOC value is calculated using the Coulomb counting method 
in training process. ADC is obtained through Coulomb counting at a 
frequency of 1 Hz, while the sampling is performed at a frequency of 0.1 
Hz. This approach ensures consistency in the dimensions of the input 
features while avoiding data redundancy. And the input of SOH esti
mation model can be represented by Eq. (7). 

Fig. 3. Ada–CNN–GRU-Ave model.  

Fig. 4. JADTL model for joint estimation of SOC and SOH.  
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where the time interval between i and i+1 is 10 s. 10 s is selected as time 
interval according to hyper-parameter tuning experience, more appro
priate interval need to be further studied in the future. 

Furthermore, it is worth noting that the utilization of the Coulomb 
counting method during the generation of ADC values is less susceptible 
to inaccuracies and cumulative errors of the sensor in practical appli
cations. This is because ADC can be reset to zero every time when the 
battery is fully charged. 

The Ada–CNN–GRU component of the SOH estimation model oper
ates in a many-to-one format, with a chosen input window size of 30. A 
complete discharge process consists of hundreds or thousands of data in 
sequence, which means that there would also be hundreds or thousands 
of SOH estimation values obtained at one single aging point. The length 
of the prior output of the model can be calculated by Eq. (8). 

Spri = St − Swin (8)  

where Spri is the length of priori output, and St is the length of data from 
a complete discharge process, and Swin is the window size of input. 

Due to the potential computational burden and the risk of generating 
unstable redundant output, this model adopts a strategy of averaging 
and updating the SOH value after completing a discharge cycle. The 
corresponding process can be mathematically expressed as Eq. (9). 

SOH =

(
∑t

i=1
ŷi

)/

t (9)  

2.4. Joint model for SOC and SOH estimation 

Despite completing the construction of the SOC estimation model 
and SOH estimation model for dynamic driving conditions throughout 
the battery’s full life cycle, a comprehensive joint estimation model has 
not been fully established. Therefore, this section introduces the JADTL 
model, depicted in Fig. 4, for jointly estimating SOC and SOH. And 
adaptive means having ability to adapt to data with different distribu
tion. During the full life cycle of the battery, the output of Ada-CNN- 
GRU-KF model and Ada-CNN-GRU-Ave model will serve as the input 
for the other. Specifically, for example, the SOH estimation results ob
tained by Ada–CNN–GRU-Ave in the (i− 1)-th cycle will be utilized as 
input of Ada–CNN–GRU-KF model for the SOC estimation in the i-th 
cycle. 

It is worth noting that under real-world conditions, the SOH value 
exhibits continuity between 2 adjacent cycles. Thus, it is feasible to take 
the average SOH value obtained from data of last cycle as SOH of current 
cycle. 

3. Datasets description 

In this study, battery experiments were conducted to collect 
discharge data from a Li-ion battery across different working conditions 
and aging points. The battery cell testing platform utilized in these ex
periments included a host, Digatron Firing Circuits cycler, Bell thermal 
chamber, and an A123-manufactured 18650 LiFePO4 battery. In addi
tion, it should be noted that, in theory, the proposed model can be 
applied to different types of batteries due to the strong non-linear fitting 

Fig. 5. (a) Battery testing platform (b) Experimental process.  
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capabilities of its basic data-driven modules. In consideration of time 
cost, aging data are only collected from LiFePO4 battery at present in this 
paper, and data collection of other types of battery and corresponding 
validation would be conducted in the future. Fig. 5(a) illustrates the 
setup used for these experiments. 

An experimental process plan, as depicted in Fig. 5(b), was devised. 
This plan includes a range of essential battery experiments, such as ca
pacity testing, dynamic driving condition testing and battery accelerated 
aging cycling. Capacity testing procedure consists of the following steps: 
1) Charging the battery to full using CCCV with a rate of 0.5C; 2) Resting 
the fully charged battery for an adequate duration; and 3) Discharging 
the battery at a constant current of 0.5C until it reaches the cut-off 
voltage. 

Dynamic driving condition testing refers to tests simulating the 
battery working in real-world. In this study, five dynamic driving con
ditions were selected, including Dynamic Stress Test (DST), The Federal 
Urban Driving Schedule (FUDS), UDDS, US06, and Beijing Dynamic 
Stress Test (BJDST), which are the commonly used test procedures given 
in battery test procedure manuals. 

The DST uses a 360 s sequence of power steps with seven discrete 
power levels. The DST is a typical driving cycle that is often used to 
evaluate various battery models and SOC estimation algorithms. The 

FUDS is a standard time-velocity profile for urban driving vehicles as 
well. The UDDS was used for the driving conditions of light vehicles. 
US06 was a driving condition of electric vehicles with high acceleration. 
The BJDST is obtained referencing DST and FUDS driving condition to 
reflect operating characteristics of electric bus in Beijing. 

The voltage and current changes along time at the initial aging point 
is shown in Fig. 6. In the following sections, the term aging point denotes 
a specific time reference within the battery aging process, initially set at 
1 for a new battery and increased by 1 after every 20 accelerated aging 
experiments. 

Considering that the current recorded in the laboratory is generally 
regarded as accurate and reliable, the integral value of the current at the 
end of the full discharge process is designated as the aged capacity. The 
reference value for the SOH of the model can be obtained from Eq. (10). 

SOHref =
Caged

Cfresh
× 100% (10) 

In this study, accelerated aging tests were devised to efficiently ac
quire battery aging data throughout its entire lifespan through high-rate 
charging and discharging at low temperatures. The experimental pro
cedure consisted of the following steps: 1) Charging the battery at a 
constant current of 2C until reaching cut-off voltage of 3.65 V, followed 
by a resting period of 0.5 h; 2) Discharging the battery at a constant 
current of 2C until reaching cut-off voltage of 2 V, followed by a resting 
period of 0.5 h; 3) Repeating steps 1 and 2 twenty times per aging point 
at a temperature of 10 ◦C until SOH of the battery fell below 70%. 

As the natural charge and discharge aging process takes a long time, 
accelerated aging tests were designed in this study to quickly obtain 
battery aging data over its full life cycle through high-rate charging and 
discharging under low-temperature conditions. The specific experi
mental procedure is as follows: 1) Charge the battery at a constant 
current of 2C to the cut-off voltage of 3.65 V and let it rest for 0.5 h; 2) 
Discharge the battery at a constant current of 2C to the cut-off voltage of 
2 V and let it rest for 0.5 h; 3) Repeat steps 1 and 2 20 times per aging 
point unit at 10 ◦C until the SOH of the battery drops below 70%. Taking 
the DST condition as an example, the voltage trajectory with aging is 
shown in Fig. 7(a). And the battery aging trend is shown in Fig. 7(b), in 
which the symbol AP means aging point. 

Fig. 6. Profiles under dynamic driving condition at initial aging point (a) DST 
(b) FUDS (c) UDDS (d) US06 (e) BJDST. 

Fig. 7. (a)Voltage tendency at different aging point under DST (b)SOH ten
dency in full life cycle. 
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4. Experimental evaluation 

4.1. Verification of Ada–CNN–GRU-KF model 

To assess the performance of the Ada–CNN–GRU-KF model in multi- 
aging point SOC estimation tasks, the datasets was initially partitioned 
into training, validation, and testing subsets. The training set comprised 
data from four different operating conditions: Cap, DST, UDDS, and 
FUDS. The validation set consisted of data from the US06 condition, 
while the testing set contained data from the BJDST condition. Addi
tionally, during the TDC stage, time series segments were manually split 
based on their respective working conditions. It should be noted that the 
following verification of other models also obeys the same rule of 
datasets splitting, and data collected from BJDST is always selected as 
testing set. 

The maximum absolute error (MAXE), MAE and the root mean 
square error (RMSE), as defined in Eq. (11), are chosen to assess the 
estimation performance of the proposed models in this paper. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

MAXE = max(|yi − ŷi|)

MAE =
1
m
∑m

i=1
|yi − ŷi|

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(yi − ŷi)

2

√
(11) 

After conducting parameter tuning on the validation set, the mea
surement noise R for the KF was determined to be 10− 3, and the process 

noise Q was set to 10− 5. The estimated SOC results, taking aging point 1 
for example, are shown in Fig. 8, and the results throughout the full life 
cycle are presented in Table 1. 

In the SOC estimation tasks, the Ada–CNN–GRU-KF model exhibits 
the capability to eliminate abnormal values, enhance result stability, 
and maintain a Maximum error within 10%. It achieves an average MAE 
value of 0.98% and an average RMSE value of 1.41% across eight aging 
points. In comparison to conventional deep learning models, the pro
posed model has been validated for its accuracy, generalization, and 
stability throughout the entire lifespan of the battery. 

Furthermore, in order to evaluate the estimation performance under 
non-full charge conditions, an experiment was conducted with SOC at 
0.3 as the starting point. And the green line in Fig. 9 presents the esti
mation results of the Ada–CNN–GRU model. Since the model parameters 
remain unchanged after training and the input data is confined to fixed- 
size windows not affected by data outside the window, the performance 
of the Ada–CNN–GRU model remains consistent across specific 
discharge intervals. 

Simultaneously, to assess the robustness of the Ada–CNN–GRU-KF 
model when the KF initial observation value is incorrect, an SOC esti
mation experiment with extreme initial value bias was performed. For 
the MAXE of Ada–CNN–GRU model reaches 23.47%, the initial obser
vation bias of KF is set to 30%. Specifically, the initial observation value 
was set to 0.6 while the reference value was 0.3. As depicted in Fig. 9, 
the estimation of the Ada–CNN–GRU-KF model converged to the normal 
range within 2 s, thereby validating the model’s robustness. 

Fig. 8. SOC estimation results at aging point 1: (a) estimated SOC (b) SOC 
estimation error. 

Table 1 
SOC estimation results during full life cycle.  

Aging 
point 

Reference 
SOH 

GRU CNN-GRU Ada–CNN–GRU Ada–CNN–GRU-KF 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAXE 
(%) 

MAE 
(%) 

RMSE 
(%) 

MAXE 
(%) 

1 1.00 1.28 2.40 16.71 1.39 2.46 15.05 1.07 1.54 7.47 1.00 1.40 6.36 
2 0.93 1.55 2.93 13.77 1.67 2.69 15.34 1.53 2.15 10.48 1.52 2.05 9.19 
3 0.89 2.61 4.18 24.42 1.47 2.57 14.56 1.41 2.12 9.97 1.19 1.85 9.36 
4 0.85 1.37 3.23 22.02 1.36 2.67 20.32 0.92 1.34 7.82 0.86 1.23 5.71 
5 0.80 1.80 4.05 27.93 1.37 2.65 17.56 0.99 1.59 23.47 0.90 1.40 7.72 
6 0.77 1.38 3.22 19.21 1.05 2.20 15.76 0.92 1.22 4.64 0.96 1.28 4.38 
7 0.74 1.78 3.49 20.72 1.42 2.40 15.06 0.80 1.19 6.74 0.72 1.08 5.80 
8 0.70 1.69 3.37 19.03 1.52 2.49 69.26 0.85 1.14 4.91 0.71 0.99 4.11  

Fig. 9. (a)SOC estimation error under conditions of unfully discharged and 
biased KF observation value at aging point 1 (b) detailed estimation error at 
the beginning. 
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4.2. Verification of Ada–CNN–GRU-Ave model 

To achieve cost-effective estimation of SOH in dynamic driving 
conditions and establish a basis for the joint estimation of SOC and SOH, 
Ada–CNN–GRU-Ave model is constructed and assessed in this section. 

Firstly, the collected data is processed by integrating and interval 
sampling to obtain feature data in required dimension at a frequency of 
0.1 Hz. And then the data is divided into training, validation, and test 
sets using the same methodology as described in section 4.2.2, thus 
completing the initial data preparation. 

In order to assess the impact of SOC and ADC as new features in the 
task of SOH estimation, three different types of input features are uti
lized for feature validation using the CNN-GRU model: a three-feature 
input Xa = [U, I,T]120×3, a four-feature input Xb = [U, I,T, SOC]120×4, 
and a five-feature input Xc = [U, I,T, SOC,ADC]120×5. The model struc
ture closely resembles that of the CNN-GRU model outlined in section 
4.2.1. The test results are presented in Fig. 10 and Table 2. Additionally, 
the Ave values in the table represent the average of the error indicators 
across eight aging points. 

It can be observed from Table 2 that incorporating the SOC feature, 
in addition to voltage, current, and temperature, reduces the average 
MAE from 0.67% to 0.45% and the average RMSE from 1.4% to 1.03%. 
Furthermore, the inclusion of ADC significantly enhances the accuracy 
of the model estimation, resulting in an average MAE value of 0.14% and 
an average RMSE value of 0.37%. Moreover, Fig. 10 illustrates that the 
model with the novel input features exhibits a faster convergence speed, 
maintaining estimation errors within 0.5% for all eight aging points 
within 15 s. 

It should be noted that although ADC value at the end of discharge is 
the same as the capacity value, this does not mean that the model is 
influenced by the value ADC at the very end of discharge process when 
estimating SOH. It can be clearly seen that the SOH value can converge 
to an accurate and credible range at the beginning of discharge, which 
means the ADC will not leak information, and the model can estimate 
SOH online reliably during testing. In addition, ADC will be re- 
calculated every time when the battery is fully charged, so it is less 
affected by accumulated error caused by sensor accuracy. 

To verify the superiority of the Ada–CNN–GRU model over the 
traditional CNN-GRU model and mitigate fluctuations and redundancy 
in the output SOH, both the Ada–CNN–GRU-Ave model and the CNN- 
GRU-Ave model are established. Apart from necessary dimension ad
justments, the model structure remains consistent. The SOH estimation 
results under BJDST condition are displayed in Fig. 11, and the error 
indicators are summarized in Table 3. 

According to Table 3 and it is evident that the Ada–CNN–GRU-Ave 
model outperforms the CNN-GRU-Ave model. Specifically, the MAE and 
RMSE values of the Ada–CNN–GRU-Ave model are 0.02% and 0.03% 
respectively, which are lower than the respective values of 0.04% and 
0.05% obtained by the CNN-GRU-Ave model. Furthermore, the MAXE of 
the Ada–CNN–GRU-Ave model is also reduced compared to the CNN- 
GRU-Ave model. Thus, the precision and superiority of the 
Ada–CNN–GRU-Ave model has been verified, establishing a foundation 
for joint estimation of SOC and SOH. 

Fig. 10. SOH estimation results of CNN-GRU model at aging point 1 based on 3 
different input features: (a) estimated SOH (b) SOH estimation error. 

Table 2 
SOH estimation results of CNN-GRU model through full life cycle based on 3 different input features.  

Aging point Reference SOH Xa Xb Xc 

MAE (%) RMSE (%) MAXE (%) MAE (%) RMSE (%) MAXE (%) MAE (%) RMSE (%) MAXE (%) 

1 1.00 2.15 5.69 20.67 1.70 5.03 26.31 0.06 0.09 1.27 
2 0.93 0.37 0.67 6.72 0.25 0.68 7.18 0.19 0.63 6.68 
3 0.89 0.59 0.91 9.91 0.30 0.49 3.24 0.18 0.41 4.31 
4 0.85 0.51 0.73 5.02 0.27 0.42 3.72 0.15 0.38 4.13 
5 0.80 0.51 0.87 7.18 0.24 0.37 2.67 0.17 0.39 4.04 
6 0.77 0.41 0.86 6.19 0.15 0.20 0.74 0.15 0.33 3.39 
7 0.74 0.47 0.67 3.61 0.42 0.61 6.29 0.14 0.29 3.04 
8 0.70 0.42 0.80 5.07 0.29 0.50 3.75 0.15 0.40 3.76 

Ave – 0.67 1.40 8.04 0.45 1.03 6.73 0.14 0.37 3.83  

Fig. 11. SOH estimation results through full life cycle: (a) estimated SOH (b) 
SOH estimation error. 
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4.3. Verification of joint estimation model 

Although the Ada–CNN–GRU-KF model incorporates SOH as an 
input feature, and the Ada–CNN–GRU-Ave model includes SOC in its 
input features, the input SOH in SOC estimation was ideal, so was SOC in 
SOH estimation. 

In the battery aging experiment, there are 30 charge and discharge 
cycles between two adjacent aging points. As a result, the SOH values 

are discrete along aging points and the SOH value estimated based on 
previous cycle cannot be leveraged at current cycle. In order to assess 
the effectiveness of JADTL, inaccurate initial SOH values with a bias of 
5% were set to obtain SOC estimation values with extreme errors during 
the first 600 s. Then the estimated SOC value was used to obtain the SOH 
value, which is closer to the value obtained in reality, and this was 
achieved using the Ada–CNN–GRU-Ave model. It should be noted that, 
for SOH estimation, the data collected during the first 600 s corresponds 
to 60 sampling points. 

As for the reason the bias is set to 5%, given that the experimental 
battery undergoes 210 charge and discharge cycles throughout its full 
life cycle, and the MAE of Ada–CNN–GRU-Ave model is 0.02% under 
ideal conditions, so the cumulative error is 210 ∗ 0.02% = 4.2%. To 
further increase the test difficulty and verify the convergence ability of 
Ada–CNN–GRU-Ave model given inaccurate SOC obtained from inac
curate SOH, the SOH initial bias is set to 5%. The specific settings are 
shown in Table 4. 

During the initial 600 s, based on inaccurate SOH value, taking the 
1st aging point for example, SOC is estimated and the results are shown 
in Fig. 12. It can be seen that despite the inaccurate initial SOH value, 
the estimated SOC can effectively depict the actual SOC trends. This 
suggests that, theoretically, it can be employed as one of the input fea
tures for SOH estimation. 

Now that the SOC results obtained in extreme condition but closer to 
reality are obtained. And applying the SOC in joint estimation, the SOH 
results are obtained and shown in Fig. 13. It is evident that even under 
extreme conditions, the SOH values could converge to a relatively ac
curate range. The MAE and RMSE of SOH results obtained using an 
inaccurate SOC are both 0.07%, with MAXE of 0.13%. 

Leveraging this SOH based on the JADTL to estimate SOC, taking 
aging point 1 for example, the SOC estimation results are shown in 
Fig. 14, while the comprehensive evaluation indicators throughout the 
battery’s entire life are presented in Table 5. 

In comparison to the SOC estimated under ideal conditions discussed 
in Section 4.2.1, the SOC estimated in simulated joint estimation 
experiment exhibits only marginal increases of 0.01%, 0.03%, and 
0.46% in MAE, RMSE, and MAXE, respectively. This performance 
achievement is deemed satisfactory, verifying the feasibility of JADTL in 
joint estimation of SOC and SOH throughout the entire life of Li-ion 
batteries under dynamic conditions. 

The code size of the proposed models is within 1 Mb. The trained FB- 
Ada–CNN–GRU-KF model occupies approximately 40 Mb of storage 

Table 3 
SOH estimation results through full life cycle.  

Model MAE (%) RMSE (%) MAXE (%) 

CNN-GRU-Ave 0.04 0.05 0.08 
Ada–CNN–GRU-Ave 0.02 0.03 0.07  

Table 4 
Settings of initial SOH value.  

Initial SOH Aging point 

1 2 3 4 5 6 7 8 

Reference 1.00 0.93 0.89 0.85 0.80 0.77 0.74 0.70 
Biased 0.95 0.88 0.84 0.81 0.75 0.72 0.69 0.65  

Fig. 12. Estimated SOC based on biased initial SOH in the first 600 s at aging 
point 1. 

Fig. 13. SOH estimation results based on estimated SOC in simulated experi
ment: (a) estimated SOH (b) SOH estimation error. 

Fig. 14. SOC estimation results in simulated experiment at aging point 1: (a) 
estimated SOC (b) SOC estimation error. 

Y. Yang et al.                                                                                                                                                                                                                                    



Energy 294 (2024) 130779

10

space. The Ada–CNN–GRU-KF and Ada–CNN–GRU-Ave models both 
occupy around 13 Mb of storage space. The joint estimation model oc
cupies approximately 26 Mb of space. The code and trained models 
could be loaded on the cloud server, and each estimation results would 
be calculated within 0.06 ms, which shows that the proposed model 
could be well applied on the task of joint estimation of SOC and SOH. 

5. Conclusion 

Firstly, an Ada–CNN–GRU-KF model that combines the advantages 
of transfer learning and deep learning is proposed with KF serving as a 
post-processor to provide stable and smooth SOC estimation results. 
Secondly, an Ada–CNN–GRU-Ave model is proposed, with dual-time 
scale input for estimating the SOH under dynamic driving conditions, 
and the model uses voltage, current, temperature, SOC, and ADC as 
input features. In the end, based on Ada–CNN–GRU-KF and 
Ada–CNN–GRU-Ave models, a JADTL model for joint estimation of SOC 
and SOH through battery’s entire life is built. To verify the performance 
of joint estimation, a simulated joint estimation experiment under dy
namic condition is conducted with initial SOH bias. And in the experi
ment, the MAE and RMSE of estimated SOH were both 0.07%, and the 
MAE and RMSE of estimated SOC were 0.99% and 1.44%, respectively. 
The generalization and accuracy of the joint estimation model were well 
verified. 

According to authors knowledge, the proposed model mainly has 2 
limitations. The first is that there are lot of hyper-parameters both in the 
neural network and the KF, it is a time consuming work to adjust these 
parameters and need a lot of experience. The second is that the proposed 
model will first train a set of hidden state parameters and weight them to 
a weighted model, so the model has more parameters than the model 
such as CNN-GRU, which would consume more computation resource 
and occupy more storage space. To address these problems, future work 
would (1) seek for intelligent algorithms for automatic parameter opti
mization, and (2) reduce the model size to enhance its suitability for 
vehicular applications. 
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